Metamath Proof Explorer


Theorem 3bitri

Description: A chained inference from transitive law for logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses 3bitri.1
|- ( ph <-> ps )
3bitri.2
|- ( ps <-> ch )
3bitri.3
|- ( ch <-> th )
Assertion 3bitri
|- ( ph <-> th )

Proof

Step Hyp Ref Expression
1 3bitri.1
 |-  ( ph <-> ps )
2 3bitri.2
 |-  ( ps <-> ch )
3 3bitri.3
 |-  ( ch <-> th )
4 2 3 bitri
 |-  ( ps <-> th )
5 1 4 bitri
 |-  ( ph <-> th )