Description: This lemma shows the equivalence of two expressions, used in norass . (Contributed by Wolf Lammen, 18-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | norasslem1 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
2 | df-nor | ⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
3 | 2 | orbi1i | ⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
4 | 1 3 | bitr4i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ) |