Description: This lemma shows the equivalence of two expressions, used in norass . (Contributed by Wolf Lammen, 18-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norasslem1 | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | |
| 2 | df-nor | ⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
| 3 | 2 | orbi1i | ⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( ¬ ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) | 
| 4 | 1 3 | bitr4i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ) |