| Step |
Hyp |
Ref |
Expression |
| 1 |
|
notbi |
⊢ ( ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) ↔ ( ¬ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ¬ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) ) |
| 2 |
|
norasslem1 |
⊢ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ⊽ 𝜑 ) ∨ 𝜒 ) ) |
| 3 |
|
norasslem1 |
⊢ ( ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ↔ ( ( 𝜓 ⊽ 𝜒 ) ∨ 𝜑 ) ) |
| 4 |
2 3
|
bibi12i |
⊢ ( ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ↔ ( ( ( 𝜓 ⊽ 𝜑 ) ∨ 𝜒 ) ↔ ( ( 𝜓 ⊽ 𝜒 ) ∨ 𝜑 ) ) ) |
| 5 |
|
bicom |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( 𝜒 ↔ 𝜑 ) ) |
| 6 |
|
norasslem2 |
⊢ ( 𝜓 → ( 𝜒 ↔ ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ) ) |
| 7 |
|
norasslem2 |
⊢ ( 𝜓 → ( 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) |
| 8 |
6 7
|
bibi12d |
⊢ ( 𝜓 → ( ( 𝜒 ↔ 𝜑 ) ↔ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) ) |
| 9 |
5 8
|
bitrid |
⊢ ( 𝜓 → ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) ) |
| 10 |
|
impimprbi |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( 𝜑 → 𝜒 ) ↔ ( 𝜒 → 𝜑 ) ) ) |
| 11 |
|
norasslem3 |
⊢ ( ¬ 𝜓 → ( ( 𝜑 → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ) ) |
| 12 |
|
norasslem3 |
⊢ ( ¬ 𝜓 → ( ( 𝜒 → 𝜑 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) |
| 13 |
11 12
|
bibi12d |
⊢ ( ¬ 𝜓 → ( ( ( 𝜑 → 𝜒 ) ↔ ( 𝜒 → 𝜑 ) ) ↔ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) ) |
| 14 |
10 13
|
bitrid |
⊢ ( ¬ 𝜓 → ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) ) |
| 15 |
9 14
|
pm2.61i |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜓 ∨ 𝜑 ) → 𝜒 ) ↔ ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) ) |
| 16 |
|
norcom |
⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ( 𝜓 ⊽ 𝜑 ) ) |
| 17 |
16
|
orbi1i |
⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜓 ⊽ 𝜑 ) ∨ 𝜒 ) ) |
| 18 |
|
orcom |
⊢ ( ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ↔ ( ( 𝜓 ⊽ 𝜒 ) ∨ 𝜑 ) ) |
| 19 |
17 18
|
bibi12i |
⊢ ( ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) ↔ ( ( ( 𝜓 ⊽ 𝜑 ) ∨ 𝜒 ) ↔ ( ( 𝜓 ⊽ 𝜒 ) ∨ 𝜑 ) ) ) |
| 20 |
4 15 19
|
3bitr4i |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) ) |
| 21 |
|
df-nor |
⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ¬ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ) |
| 22 |
|
df-nor |
⊢ ( ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ↔ ¬ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) |
| 23 |
21 22
|
bibi12i |
⊢ ( ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ) ↔ ( ¬ ( ( 𝜑 ⊽ 𝜓 ) ∨ 𝜒 ) ↔ ¬ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) ) |
| 24 |
1 20 23
|
3bitr4i |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ) ) |