| Step | Hyp | Ref | Expression | 
						
							| 1 |  | notbi | ⊢ ( ( ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) )  ↔  ( ¬  ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ¬  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) ) ) | 
						
							| 2 |  | norasslem1 | ⊢ ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ⊽  𝜑 )  ∨  𝜒 ) ) | 
						
							| 3 |  | norasslem1 | ⊢ ( ( ( 𝜓  ∨  𝜒 )  →  𝜑 )  ↔  ( ( 𝜓  ⊽  𝜒 )  ∨  𝜑 ) ) | 
						
							| 4 | 2 3 | bibi12i | ⊢ ( ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) )  ↔  ( ( ( 𝜓  ⊽  𝜑 )  ∨  𝜒 )  ↔  ( ( 𝜓  ⊽  𝜒 )  ∨  𝜑 ) ) ) | 
						
							| 5 |  | bicom | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( 𝜒  ↔  𝜑 ) ) | 
						
							| 6 |  | norasslem2 | ⊢ ( 𝜓  →  ( 𝜒  ↔  ( ( 𝜓  ∨  𝜑 )  →  𝜒 ) ) ) | 
						
							| 7 |  | norasslem2 | ⊢ ( 𝜓  →  ( 𝜑  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) | 
						
							| 8 | 6 7 | bibi12d | ⊢ ( 𝜓  →  ( ( 𝜒  ↔  𝜑 )  ↔  ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 9 | 5 8 | bitrid | ⊢ ( 𝜓  →  ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 10 |  | impimprbi | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( 𝜑  →  𝜒 )  ↔  ( 𝜒  →  𝜑 ) ) ) | 
						
							| 11 |  | norasslem3 | ⊢ ( ¬  𝜓  →  ( ( 𝜑  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜑 )  →  𝜒 ) ) ) | 
						
							| 12 |  | norasslem3 | ⊢ ( ¬  𝜓  →  ( ( 𝜒  →  𝜑 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) | 
						
							| 13 | 11 12 | bibi12d | ⊢ ( ¬  𝜓  →  ( ( ( 𝜑  →  𝜒 )  ↔  ( 𝜒  →  𝜑 ) )  ↔  ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 14 | 10 13 | bitrid | ⊢ ( ¬  𝜓  →  ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) ) | 
						
							| 15 | 9 14 | pm2.61i | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜓  ∨  𝜑 )  →  𝜒 )  ↔  ( ( 𝜓  ∨  𝜒 )  →  𝜑 ) ) ) | 
						
							| 16 |  | norcom | ⊢ ( ( 𝜑  ⊽  𝜓 )  ↔  ( 𝜓  ⊽  𝜑 ) ) | 
						
							| 17 | 16 | orbi1i | ⊢ ( ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ( ( 𝜓  ⊽  𝜑 )  ∨  𝜒 ) ) | 
						
							| 18 |  | orcom | ⊢ ( ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) )  ↔  ( ( 𝜓  ⊽  𝜒 )  ∨  𝜑 ) ) | 
						
							| 19 | 17 18 | bibi12i | ⊢ ( ( ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) )  ↔  ( ( ( 𝜓  ⊽  𝜑 )  ∨  𝜒 )  ↔  ( ( 𝜓  ⊽  𝜒 )  ∨  𝜑 ) ) ) | 
						
							| 20 | 4 15 19 | 3bitr4i | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) ) ) | 
						
							| 21 |  | df-nor | ⊢ ( ( ( 𝜑  ⊽  𝜓 )  ⊽  𝜒 )  ↔  ¬  ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 ) ) | 
						
							| 22 |  | df-nor | ⊢ ( ( 𝜑  ⊽  ( 𝜓  ⊽  𝜒 ) )  ↔  ¬  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) ) | 
						
							| 23 | 21 22 | bibi12i | ⊢ ( ( ( ( 𝜑  ⊽  𝜓 )  ⊽  𝜒 )  ↔  ( 𝜑  ⊽  ( 𝜓  ⊽  𝜒 ) ) )  ↔  ( ¬  ( ( 𝜑  ⊽  𝜓 )  ∨  𝜒 )  ↔  ¬  ( 𝜑  ∨  ( 𝜓  ⊽  𝜒 ) ) ) ) | 
						
							| 24 | 1 20 23 | 3bitr4i | ⊢ ( ( 𝜑  ↔  𝜒 )  ↔  ( ( ( 𝜑  ⊽  𝜓 )  ⊽  𝜒 )  ↔  ( 𝜑  ⊽  ( 𝜓  ⊽  𝜒 ) ) ) ) |