Description: Inference eliminating an antecedent. (Contributed by NM, 5-Apr-1994) (Proof shortened by Wolf Lammen, 19-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pm2.61i.1 | ⊢ ( 𝜑 → 𝜓 ) | |
pm2.61i.2 | ⊢ ( ¬ 𝜑 → 𝜓 ) | ||
Assertion | pm2.61i | ⊢ 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61i.1 | ⊢ ( 𝜑 → 𝜓 ) | |
2 | pm2.61i.2 | ⊢ ( ¬ 𝜑 → 𝜓 ) | |
3 | 1 2 | nsyl4 | ⊢ ( ¬ 𝜓 → 𝜓 ) |
4 | 3 | pm2.18i | ⊢ 𝜓 |