Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( 𝜑 ↔ 𝜒 ) ) |
2 |
1
|
notbid |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ¬ 𝜑 ↔ ¬ 𝜒 ) ) |
3 |
2
|
bicomd |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ¬ 𝜒 ↔ ¬ 𝜑 ) ) |
4 |
2
|
anbi2d |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( ¬ 𝜓 ∧ ¬ 𝜑 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
5 |
4
|
notbid |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
6 |
3 5
|
anbi12d |
⊢ ( ( 𝜑 ↔ 𝜒 ) → ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) |
7 |
|
olc |
⊢ ( 𝜑 → ( 𝜓 ∨ 𝜑 ) ) |
8 |
|
oran |
⊢ ( ( 𝜓 ∨ 𝜑 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) |
10 |
9
|
anim1ci |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
11 |
|
animorl |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) → ( 𝜑 ∨ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
12 |
|
oran |
⊢ ( ( 𝜑 ∨ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
14 |
10 13
|
jcnd |
⊢ ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) |
15 |
14
|
ex |
⊢ ( 𝜑 → ( ¬ 𝜒 → ¬ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) ) |
16 |
15
|
con4d |
⊢ ( 𝜑 → ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → 𝜒 ) ) |
17 |
16
|
com12 |
⊢ ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → ( 𝜑 → 𝜒 ) ) |
18 |
|
olc |
⊢ ( 𝜒 → ( 𝜓 ∨ 𝜒 ) ) |
19 |
|
oran |
⊢ ( ( 𝜓 ∨ 𝜒 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
20 |
18 19
|
sylib |
⊢ ( 𝜒 → ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
21 |
20
|
anim1ci |
⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
22 |
|
animorl |
⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → ( 𝜒 ∨ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
23 |
|
oran |
⊢ ( ( 𝜒 ∨ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ¬ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
24 |
22 23
|
sylib |
⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → ¬ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
25 |
21 24
|
jcnd |
⊢ ( ( 𝜒 ∧ ¬ 𝜑 ) → ¬ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) |
26 |
25
|
ex |
⊢ ( 𝜒 → ( ¬ 𝜑 → ¬ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) ) |
27 |
26
|
con4d |
⊢ ( 𝜒 → ( ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) → 𝜑 ) ) |
28 |
27
|
com12 |
⊢ ( ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) → ( 𝜒 → 𝜑 ) ) |
29 |
17 28
|
anim12i |
⊢ ( ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ∧ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) → ( ( 𝜑 → 𝜒 ) ∧ ( 𝜒 → 𝜑 ) ) ) |
30 |
|
dfbi2 |
⊢ ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ↔ ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ∧ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) ) |
31 |
|
dfbi2 |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( 𝜑 → 𝜒 ) ∧ ( 𝜒 → 𝜑 ) ) ) |
32 |
29 30 31
|
3imtr4i |
⊢ ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → ( 𝜑 ↔ 𝜒 ) ) |
33 |
6 32
|
impbii |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) |
34 |
|
norcom |
⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( 𝜒 ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |
35 |
|
df-nor |
⊢ ( ( 𝜒 ⊽ ( 𝜑 ⊽ 𝜓 ) ) ↔ ¬ ( 𝜒 ∨ ( 𝜑 ⊽ 𝜓 ) ) ) |
36 |
|
ioran |
⊢ ( ¬ ( 𝜒 ∨ ( 𝜑 ⊽ 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( 𝜑 ⊽ 𝜓 ) ) ) |
37 |
|
norcom |
⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ( 𝜓 ⊽ 𝜑 ) ) |
38 |
|
df-nor |
⊢ ( ( 𝜓 ⊽ 𝜑 ) ↔ ¬ ( 𝜓 ∨ 𝜑 ) ) |
39 |
|
ioran |
⊢ ( ¬ ( 𝜓 ∨ 𝜑 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) |
40 |
37 38 39
|
3bitri |
⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) |
41 |
40
|
notbii |
⊢ ( ¬ ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) |
42 |
41
|
anbi2i |
⊢ ( ( ¬ 𝜒 ∧ ¬ ( 𝜑 ⊽ 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
43 |
36 42
|
bitri |
⊢ ( ¬ ( 𝜒 ∨ ( 𝜑 ⊽ 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
44 |
34 35 43
|
3bitri |
⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) |
45 |
|
df-nor |
⊢ ( ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ↔ ¬ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ) |
46 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ ( 𝜓 ⊽ 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( 𝜓 ⊽ 𝜒 ) ) ) |
47 |
|
df-nor |
⊢ ( ( 𝜓 ⊽ 𝜒 ) ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) |
48 |
|
ioran |
⊢ ( ¬ ( 𝜓 ∨ 𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
49 |
47 48
|
bitri |
⊢ ( ( 𝜓 ⊽ 𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
50 |
49
|
notbii |
⊢ ( ¬ ( 𝜓 ⊽ 𝜒 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
51 |
50
|
anbi2i |
⊢ ( ( ¬ 𝜑 ∧ ¬ ( 𝜓 ⊽ 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
52 |
45 46 51
|
3bitri |
⊢ ( ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
53 |
44 52
|
bibi12i |
⊢ ( ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ) ↔ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) |
54 |
33 53
|
bitr4i |
⊢ ( ( 𝜑 ↔ 𝜒 ) ↔ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ 𝜒 ) ↔ ( 𝜑 ⊽ ( 𝜓 ⊽ 𝜒 ) ) ) ) |