Metamath Proof Explorer


Theorem norassOLD

Description: Obsolete version of norass as of 17-Dec-2023. (Contributed by RP, 29-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion norassOLD ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑 𝜓 ) 𝜒 ) ↔ ( 𝜑 ( 𝜓 𝜒 ) ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑𝜒 ) → ( 𝜑𝜒 ) )
2 1 notbid ( ( 𝜑𝜒 ) → ( ¬ 𝜑 ↔ ¬ 𝜒 ) )
3 2 bicomd ( ( 𝜑𝜒 ) → ( ¬ 𝜒 ↔ ¬ 𝜑 ) )
4 2 anbi2d ( ( 𝜑𝜒 ) → ( ( ¬ 𝜓 ∧ ¬ 𝜑 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
5 4 notbid ( ( 𝜑𝜒 ) → ( ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
6 3 5 anbi12d ( ( 𝜑𝜒 ) → ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) )
7 olc ( 𝜑 → ( 𝜓𝜑 ) )
8 oran ( ( 𝜓𝜑 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) )
9 7 8 sylib ( 𝜑 → ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) )
10 9 anim1ci ( ( 𝜑 ∧ ¬ 𝜒 ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
11 animorl ( ( 𝜑 ∧ ¬ 𝜒 ) → ( 𝜑 ∨ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
12 oran ( ( 𝜑 ∨ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ↔ ¬ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
13 11 12 sylib ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
14 10 13 jcnd ( ( 𝜑 ∧ ¬ 𝜒 ) → ¬ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) )
15 14 ex ( 𝜑 → ( ¬ 𝜒 → ¬ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ) )
16 15 con4d ( 𝜑 → ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → 𝜒 ) )
17 16 com12 ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → ( 𝜑𝜒 ) )
18 olc ( 𝜒 → ( 𝜓𝜒 ) )
19 oran ( ( 𝜓𝜒 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
20 18 19 sylib ( 𝜒 → ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
21 20 anim1ci ( ( 𝜒 ∧ ¬ 𝜑 ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
22 animorl ( ( 𝜒 ∧ ¬ 𝜑 ) → ( 𝜒 ∨ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
23 oran ( ( 𝜒 ∨ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ¬ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
24 22 23 sylib ( ( 𝜒 ∧ ¬ 𝜑 ) → ¬ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
25 21 24 jcnd ( ( 𝜒 ∧ ¬ 𝜑 ) → ¬ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) )
26 25 ex ( 𝜒 → ( ¬ 𝜑 → ¬ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) )
27 26 con4d ( 𝜒 → ( ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) → 𝜑 ) )
28 27 com12 ( ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) → ( 𝜒𝜑 ) )
29 17 28 anim12i ( ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ∧ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) → ( ( 𝜑𝜒 ) ∧ ( 𝜒𝜑 ) ) )
30 dfbi2 ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ↔ ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) → ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) ∧ ( ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ) ) )
31 dfbi2 ( ( 𝜑𝜒 ) ↔ ( ( 𝜑𝜒 ) ∧ ( 𝜒𝜑 ) ) )
32 29 30 31 3imtr4i ( ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) → ( 𝜑𝜒 ) )
33 6 32 impbii ( ( 𝜑𝜒 ) ↔ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) )
34 norcom ( ( ( 𝜑 𝜓 ) 𝜒 ) ↔ ( 𝜒 ( 𝜑 𝜓 ) ) )
35 df-nor ( ( 𝜒 ( 𝜑 𝜓 ) ) ↔ ¬ ( 𝜒 ∨ ( 𝜑 𝜓 ) ) )
36 ioran ( ¬ ( 𝜒 ∨ ( 𝜑 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( 𝜑 𝜓 ) ) )
37 norcom ( ( 𝜑 𝜓 ) ↔ ( 𝜓 𝜑 ) )
38 df-nor ( ( 𝜓 𝜑 ) ↔ ¬ ( 𝜓𝜑 ) )
39 ioran ( ¬ ( 𝜓𝜑 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜑 ) )
40 37 38 39 3bitri ( ( 𝜑 𝜓 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜑 ) )
41 40 notbii ( ¬ ( 𝜑 𝜓 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) )
42 41 anbi2i ( ( ¬ 𝜒 ∧ ¬ ( 𝜑 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
43 36 42 bitri ( ¬ ( 𝜒 ∨ ( 𝜑 𝜓 ) ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
44 34 35 43 3bitri ( ( ( 𝜑 𝜓 ) 𝜒 ) ↔ ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) )
45 df-nor ( ( 𝜑 ( 𝜓 𝜒 ) ) ↔ ¬ ( 𝜑 ∨ ( 𝜓 𝜒 ) ) )
46 ioran ( ¬ ( 𝜑 ∨ ( 𝜓 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( 𝜓 𝜒 ) ) )
47 df-nor ( ( 𝜓 𝜒 ) ↔ ¬ ( 𝜓𝜒 ) )
48 ioran ( ¬ ( 𝜓𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
49 47 48 bitri ( ( 𝜓 𝜒 ) ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
50 49 notbii ( ¬ ( 𝜓 𝜒 ) ↔ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) )
51 50 anbi2i ( ( ¬ 𝜑 ∧ ¬ ( 𝜓 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
52 45 46 51 3bitri ( ( 𝜑 ( 𝜓 𝜒 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) )
53 44 52 bibi12i ( ( ( ( 𝜑 𝜓 ) 𝜒 ) ↔ ( 𝜑 ( 𝜓 𝜒 ) ) ) ↔ ( ( ¬ 𝜒 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜑 ) ) ↔ ( ¬ 𝜑 ∧ ¬ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) )
54 33 53 bitr4i ( ( 𝜑𝜒 ) ↔ ( ( ( 𝜑 𝜓 ) 𝜒 ) ↔ ( 𝜑 ( 𝜓 𝜒 ) ) ) )