Description: This lemma specializes biorf suitably for the proof of norass . (Contributed by Wolf Lammen, 18-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | norasslem3 | ⊢ ( ¬ 𝜑 → ( ( 𝜓 → 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biorf | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑 ∨ 𝜓 ) ) ) | |
2 | 1 | imbi1d | ⊢ ( ¬ 𝜑 → ( ( 𝜓 → 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) → 𝜒 ) ) ) |