Metamath Proof Explorer


Theorem norasslem3

Description: This lemma specializes biorf suitably for the proof of norass . (Contributed by Wolf Lammen, 18-Dec-2023)

Ref Expression
Assertion norasslem3 ( ¬ 𝜑 → ( ( 𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) → 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 biorf ( ¬ 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 1 imbi1d ( ¬ 𝜑 → ( ( 𝜓𝜒 ) ↔ ( ( 𝜑𝜓 ) → 𝜒 ) ) )