Description: This lemma specializes biimt suitably for the proof of norass . (Contributed by Wolf Lammen, 18-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norasslem2 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biimt | ⊢ ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) | |
| 2 | 1 | orcs | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) |