Metamath Proof Explorer


Theorem norasslem2

Description: This lemma specializes biimt suitably for the proof of norass . (Contributed by Wolf Lammen, 18-Dec-2023)

Ref Expression
Assertion norasslem2 ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑𝜒 ) → 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 orc ( 𝜑 → ( 𝜑𝜒 ) )
2 biimt ( ( 𝜑𝜒 ) → ( 𝜓 ↔ ( ( 𝜑𝜒 ) → 𝜓 ) ) )
3 1 2 syl ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑𝜒 ) → 𝜓 ) ) )