Description: This lemma specializes biimt suitably for the proof of norass . (Contributed by Wolf Lammen, 18-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | norasslem2 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜒 ) ) | |
2 | biimt | ⊢ ( ( 𝜑 ∨ 𝜒 ) → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜑 ∨ 𝜒 ) → 𝜓 ) ) ) |