Metamath Proof Explorer


Theorem norass

Description: A characterization of when an expression involving joint denials associates. This is identical to the case when alternative denial is associative, see nanass . Remark: Like alternative denial, joint denial is also commutative, see norcom . (Contributed by RP, 29-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)

Ref Expression
Assertion norass φχφψχφψχ

Proof

Step Hyp Ref Expression
1 notbi φψχφψχ¬φψχ¬φψχ
2 norasslem1 ψφχψφχ
3 norasslem1 ψχφψχφ
4 2 3 bibi12i ψφχψχφψφχψχφ
5 bicom φχχφ
6 norasslem2 ψχψφχ
7 norasslem2 ψφψχφ
8 6 7 bibi12d ψχφψφχψχφ
9 5 8 bitrid ψφχψφχψχφ
10 impimprbi φχφχχφ
11 norasslem3 ¬ψφχψφχ
12 norasslem3 ¬ψχφψχφ
13 11 12 bibi12d ¬ψφχχφψφχψχφ
14 10 13 bitrid ¬ψφχψφχψχφ
15 9 14 pm2.61i φχψφχψχφ
16 norcom φψψφ
17 16 orbi1i φψχψφχ
18 orcom φψχψχφ
19 17 18 bibi12i φψχφψχψφχψχφ
20 4 15 19 3bitr4i φχφψχφψχ
21 df-nor φψχ¬φψχ
22 df-nor φψχ¬φψχ
23 21 22 bibi12i φψχφψχ¬φψχ¬φψχ
24 1 20 23 3bitr4i φχφψχφψχ