Metamath Proof Explorer


Definition df-nor

Description: Define joint denial ("not-or" or "nor"). After we define the constant true T. ( df-tru ) and the constant false F. ( df-fal ), we will be able to prove these truth table values: ( ( T. -\/ T. ) <-> F. ) ( trunortru ), ( ( T. -\/ F. ) <-> F. ) ( trunorfal ), ( ( F. -\/ T. ) <-> F. ) ( falnortru ), and ( ( F. -\/ F. ) <-> T. ) ( falnorfal ). Contrast with /\ ( df-an ), \/ ( df-or ), -> ( wi ), -/\ ( df-nan ), and \/_ ( df-xor ). (Contributed by Remi, 25-Oct-2023)

Ref Expression
Assertion df-nor
|- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 0 1 wnor
 |-  ( ph -\/ ps )
3 0 1 wo
 |-  ( ph \/ ps )
4 3 wn
 |-  -. ( ph \/ ps )
5 2 4 wb
 |-  ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )