Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 7-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | trunortru | |- ( ( T. -\/ T. ) <-> F. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | |- ( ( T. -\/ T. ) <-> -. ( T. \/ T. ) ) |
|
2 | truortru | |- ( ( T. \/ T. ) <-> T. ) |
|
3 | 1 2 | xchbinx | |- ( ( T. -\/ T. ) <-> -. T. ) |
4 | df-fal | |- ( F. <-> -. T. ) |
|
5 | 3 4 | bitr4i | |- ( ( T. -\/ T. ) <-> F. ) |