Metamath Proof Explorer


Theorem trunortru

Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 7-Dec-2023)

Ref Expression
Assertion trunortru ( ( ⊤ ⊤ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 df-nor ( ( ⊤ ⊤ ) ↔ ¬ ( ⊤ ∨ ⊤ ) )
2 truortru ( ( ⊤ ∨ ⊤ ) ↔ ⊤ )
3 1 2 xchbinx ( ( ⊤ ⊤ ) ↔ ¬ ⊤ )
4 df-fal ( ⊥ ↔ ¬ ⊤ )
5 3 4 bitr4i ( ( ⊤ ⊤ ) ↔ ⊥ )