Metamath Proof Explorer


Theorem falnortru

Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023)

Ref Expression
Assertion falnortru
|- ( ( F. -\/ T. ) <-> F. )

Proof

Step Hyp Ref Expression
1 norcom
 |-  ( ( F. -\/ T. ) <-> ( T. -\/ F. ) )
2 trunorfal
 |-  ( ( T. -\/ F. ) <-> F. )
3 1 2 bitri
 |-  ( ( F. -\/ T. ) <-> F. )