Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falnorfal | |- ( ( F. -\/ F. ) <-> T. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nor | |- ( ( F. -\/ F. ) <-> -. ( F. \/ F. ) ) |
|
| 2 | falorfal | |- ( ( F. \/ F. ) <-> F. ) |
|
| 3 | 1 2 | xchbinx | |- ( ( F. -\/ F. ) <-> -. F. ) |
| 4 | notfal | |- ( -. F. <-> T. ) |
|
| 5 | 3 4 | bitri | |- ( ( F. -\/ F. ) <-> T. ) |