Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | falnorfal | |- ( ( F. -\/ F. ) <-> T. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | |- ( ( F. -\/ F. ) <-> -. ( F. \/ F. ) ) |
|
2 | falorfal | |- ( ( F. \/ F. ) <-> F. ) |
|
3 | 1 2 | xchbinx | |- ( ( F. -\/ F. ) <-> -. F. ) |
4 | notfal | |- ( -. F. <-> T. ) |
|
5 | 3 4 | bitri | |- ( ( F. -\/ F. ) <-> T. ) |