Metamath Proof Explorer


Theorem falnorfal

Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)

Ref Expression
Assertion falnorfal ( ( ⊥ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 df-nor ( ( ⊥ ⊥ ) ↔ ¬ ( ⊥ ∨ ⊥ ) )
2 falorfal ( ( ⊥ ∨ ⊥ ) ↔ ⊥ )
3 1 2 xchbinx ( ( ⊥ ⊥ ) ↔ ¬ ⊥ )
4 notfal ( ¬ ⊥ ↔ ⊤ )
5 3 4 bitri ( ( ⊥ ⊥ ) ↔ ⊤ )