Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | falnorfal | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ⊤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nor | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ¬ ( ⊥ ∨ ⊥ ) ) | |
| 2 | falorfal | ⊢ ( ( ⊥ ∨ ⊥ ) ↔ ⊥ ) | |
| 3 | 1 2 | xchbinx | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ¬ ⊥ ) |
| 4 | notfal | ⊢ ( ¬ ⊥ ↔ ⊤ ) | |
| 5 | 3 4 | bitri | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ⊤ ) |