Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 17-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | falnorfal | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ⊤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ¬ ( ⊥ ∨ ⊥ ) ) | |
2 | falorfal | ⊢ ( ( ⊥ ∨ ⊥ ) ↔ ⊥ ) | |
3 | 1 2 | xchbinx | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ¬ ⊥ ) |
4 | notfal | ⊢ ( ¬ ⊥ ↔ ⊤ ) | |
5 | 3 4 | bitri | ⊢ ( ( ⊥ ⊽ ⊥ ) ↔ ⊤ ) |