Metamath Proof Explorer


Theorem falnorfalOLD

Description: Obsolete version of falnorfal as of 17-Dec-2023. (Contributed by Remi, 25-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion falnorfalOLD ( ( ⊥ ⊥ ) ↔ ⊤ )

Proof

Step Hyp Ref Expression
1 df-nor ( ( ⊥ ⊥ ) ↔ ¬ ( ⊥ ∨ ⊥ ) )
2 notfal ( ¬ ⊥ ↔ ⊤ )
3 2 bicomi ( ⊤ ↔ ¬ ⊥ )
4 falorfal ( ( ⊥ ∨ ⊥ ) ↔ ⊥ )
5 4 bicomi ( ⊥ ↔ ( ⊥ ∨ ⊥ ) )
6 3 5 xchbinx ( ⊤ ↔ ¬ ( ⊥ ∨ ⊥ ) )
7 6 bicomi ( ¬ ( ⊥ ∨ ⊥ ) ↔ ⊤ )
8 1 7 bitri ( ( ⊥ ⊥ ) ↔ ⊤ )