Metamath Proof Explorer


Theorem falnortru

Description: A -\/ identity. (Contributed by Remi, 25-Oct-2023)

Ref Expression
Assertion falnortru ( ( ⊥ ⊤ ) ↔ ⊥ )

Proof

Step Hyp Ref Expression
1 norcom ( ( ⊥ ⊤ ) ↔ ( ⊤ ⊥ ) )
2 trunorfal ( ( ⊤ ⊥ ) ↔ ⊥ )
3 1 2 bitri ( ( ⊥ ⊤ ) ↔ ⊥ )