Description: The connector -\/ is commutative. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 23-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | norcom | |- ( ( ph -\/ ps ) <-> ( ps -\/ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | |- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) ) |
|
2 | orcom | |- ( ( ph \/ ps ) <-> ( ps \/ ph ) ) |
|
3 | 1 2 | xchbinx | |- ( ( ph -\/ ps ) <-> -. ( ps \/ ph ) ) |
4 | df-nor | |- ( ( ps -\/ ph ) <-> -. ( ps \/ ph ) ) |
|
5 | 3 4 | bitr4i | |- ( ( ph -\/ ps ) <-> ( ps -\/ ph ) ) |