Description: The connector -\/ is commutative. (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 23-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norcom | |- ( ( ph -\/ ps ) <-> ( ps -\/ ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor | |- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) ) | |
| 2 | orcom | |- ( ( ph \/ ps ) <-> ( ps \/ ph ) ) | |
| 3 | 1 2 | xchbinx | |- ( ( ph -\/ ps ) <-> -. ( ps \/ ph ) ) | 
| 4 | df-nor | |- ( ( ps -\/ ph ) <-> -. ( ps \/ ph ) ) | |
| 5 | 3 4 | bitr4i | |- ( ( ph -\/ ps ) <-> ( ps -\/ ph ) ) |