Metamath Proof Explorer


Theorem norcomOLD

Description: Obsolete version of norcom as of 23-Apr-2024. (Contributed by Remi, 25-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion norcomOLD
|- ( ( ph -\/ ps ) <-> ( ps -\/ ph ) )

Proof

Step Hyp Ref Expression
1 orcom
 |-  ( ( ph \/ ps ) <-> ( ps \/ ph ) )
2 1 notbii
 |-  ( -. ( ph \/ ps ) <-> -. ( ps \/ ph ) )
3 df-nor
 |-  ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )
4 df-nor
 |-  ( ( ps -\/ ph ) <-> -. ( ps \/ ph ) )
5 2 3 4 3bitr4i
 |-  ( ( ph -\/ ps ) <-> ( ps -\/ ph ) )