Metamath Proof Explorer


Theorem noror

Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noror ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 df-nor ( ( 𝜑 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
2 1 con2bii ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑 𝜓 ) )
3 nornot ( ¬ ( 𝜑 𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )
4 2 3 bitri ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )