Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | noror | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor | ⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
| 2 | 1 | con2bii | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ¬ ( 𝜑 ⊽ 𝜓 ) ) | 
| 3 | nornot | ⊢ ( ¬ ( 𝜑 ⊽ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |