Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | noror | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | ⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
2 | 1 | con2bii | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ¬ ( 𝜑 ⊽ 𝜓 ) ) |
3 | nornot | ⊢ ( ¬ ( 𝜑 ⊽ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) | |
4 | 2 3 | bitri | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |