Description: Obsolete version of noror as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nororOLD | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnotb | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ¬ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
2 | df-nor | ⊢ ( ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ( 𝜑 ∨ 𝜓 ) ) | |
3 | 2 | notbii | ⊢ ( ¬ ( 𝜑 ⊽ 𝜓 ) ↔ ¬ ¬ ( 𝜑 ∨ 𝜓 ) ) |
4 | nornot | ⊢ ( ¬ ( 𝜑 ⊽ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) | |
5 | 1 3 4 | 3bitr2ri | ⊢ ( ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ↔ ( 𝜑 ∨ 𝜓 ) ) |
6 | 5 | bicomi | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜓 ) ⊽ ( 𝜑 ⊽ 𝜓 ) ) ) |