Metamath Proof Explorer


Theorem nororOLD

Description: Obsolete version of noror as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nororOLD ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 notnotb ( ( 𝜑𝜓 ) ↔ ¬ ¬ ( 𝜑𝜓 ) )
2 df-nor ( ( 𝜑 𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
3 2 notbii ( ¬ ( 𝜑 𝜓 ) ↔ ¬ ¬ ( 𝜑𝜓 ) )
4 nornot ( ¬ ( 𝜑 𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )
5 1 3 4 3bitr2ri ( ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) ↔ ( 𝜑𝜓 ) )
6 5 bicomi ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜓 ) ( 𝜑 𝜓 ) ) )