Metamath Proof Explorer
		
		
		
		Description:  A chained inference from transitive law for logical equivalence.
       (Contributed by NM, 4-Aug-2006)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | 3bitr2i.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
					
						|  |  | 3bitr2i.2 | ⊢ ( 𝜒  ↔  𝜓 ) | 
					
						|  |  | 3bitr2i.3 | ⊢ ( 𝜒  ↔  𝜃 ) | 
				
					|  | Assertion | 3bitr2ri | ⊢  ( 𝜃  ↔  𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3bitr2i.1 | ⊢ ( 𝜑  ↔  𝜓 ) | 
						
							| 2 |  | 3bitr2i.2 | ⊢ ( 𝜒  ↔  𝜓 ) | 
						
							| 3 |  | 3bitr2i.3 | ⊢ ( 𝜒  ↔  𝜃 ) | 
						
							| 4 | 1 2 | bitr4i | ⊢ ( 𝜑  ↔  𝜒 ) | 
						
							| 5 | 4 3 | bitr2i | ⊢ ( 𝜃  ↔  𝜑 ) |