Metamath Proof Explorer


Theorem nororOLD

Description: Obsolete version of noror as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nororOLD
|- ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )

Proof

Step Hyp Ref Expression
1 notnotb
 |-  ( ( ph \/ ps ) <-> -. -. ( ph \/ ps ) )
2 df-nor
 |-  ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )
3 2 notbii
 |-  ( -. ( ph -\/ ps ) <-> -. -. ( ph \/ ps ) )
4 nornot
 |-  ( -. ( ph -\/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )
5 1 3 4 3bitr2ri
 |-  ( ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) <-> ( ph \/ ps ) )
6 5 bicomi
 |-  ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )