Metamath Proof Explorer


Theorem notnotb

Description: Double negation. Theorem *4.13 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-1993)

Ref Expression
Assertion notnotb
|- ( ph <-> -. -. ph )

Proof

Step Hyp Ref Expression
1 notnot
 |-  ( ph -> -. -. ph )
2 notnotr
 |-  ( -. -. ph -> ph )
3 1 2 impbii
 |-  ( ph <-> -. -. ph )