Description: A biconditional form of contraposition. Theorem *4.1 of WhiteheadRussell p. 116. (Contributed by NM, 11-May-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | con34b | |- ( ( ph -> ps ) <-> ( -. ps -> -. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con3 | |- ( ( ph -> ps ) -> ( -. ps -> -. ph ) ) |
|
| 2 | con4 | |- ( ( -. ps -> -. ph ) -> ( ph -> ps ) ) |
|
| 3 | 1 2 | impbii | |- ( ( ph -> ps ) <-> ( -. ps -> -. ph ) ) |