Metamath Proof Explorer


Theorem anbi12d

Description: Deduction joining two equivalences to form equivalence of conjunctions. (Contributed by NM, 26-May-1993)

Ref Expression
Hypotheses anbi12d.1 φψχ
anbi12d.2 φθτ
Assertion anbi12d φψθχτ

Proof

Step Hyp Ref Expression
1 anbi12d.1 φψχ
2 anbi12d.2 φθτ
3 1 anbi1d φψθχθ
4 2 anbi2d φχθχτ
5 3 4 bitrd φψθχτ