Metamath Proof Explorer


Theorem ad4antlr

Description: Deduction adding 4 conjuncts to antecedent. (Contributed by Mario Carneiro, 5-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad4antlr χφθτηψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantl χφψ
3 2 ad3antrrr χφθτηψ