Metamath Proof Explorer


Theorem ad5antr

Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by Wolf Lammen, 5-Apr-2022)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad5antr φχθτηζψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantr φχψ
3 2 ad4antr φχθτηζψ