Metamath Proof Explorer


Theorem anabss3

Description: Absorption of antecedent into conjunction. (Contributed by NM, 20-Jul-1996) (Proof shortened by Wolf Lammen, 1-Jan-2013)

Ref Expression
Hypothesis anabss3.1 φψψχ
Assertion anabss3 φψχ

Proof

Step Hyp Ref Expression
1 anabss3.1 φψψχ
2 1 anasss φψψχ
3 2 anabsan2 φψχ