Metamath Proof Explorer


Theorem biimtrid

Description: A mixed syllogism inference from a nested implication and a biconditional. Useful for substituting an embedded antecedent with a definition. (Contributed by NM, 12-Jan-1993)

Ref Expression
Hypotheses biimtrid.1 φψ
biimtrid.2 χψθ
Assertion biimtrid χφθ

Proof

Step Hyp Ref Expression
1 biimtrid.1 φψ
2 biimtrid.2 χψθ
3 1 biimpi φψ
4 3 2 syl5 χφθ