Metamath Proof Explorer


Theorem simprbda

Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007)

Ref Expression
Hypothesis pm3.26bda.1 φψχθ
Assertion simprbda φψχ

Proof

Step Hyp Ref Expression
1 pm3.26bda.1 φψχθ
2 1 biimpa φψχθ
3 2 simpld φψχ