Metamath Proof Explorer


Theorem simprbda

Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007)

Ref Expression
Hypothesis pm3.26bda.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
Assertion simprbda ( ( 𝜑𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 pm3.26bda.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃 ) ) )
2 1 biimpa ( ( 𝜑𝜓 ) → ( 𝜒𝜃 ) )
3 2 simpld ( ( 𝜑𝜓 ) → 𝜒 )