Metamath Proof Explorer


Theorem simpld

Description: Deduction eliminating a conjunct. A translation of natural deduction rule /\ EL ( /\ elimination left), see natded . (Contributed by NM, 26-May-1993)

Ref Expression
Hypothesis simpld.1 φ ψ χ
Assertion simpld φ ψ

Proof

Step Hyp Ref Expression
1 simpld.1 φ ψ χ
2 simpl ψ χ ψ
3 1 2 syl φ ψ