Metamath Proof Explorer


Theorem syl3anl3

Description: A syllogism inference. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses syl3anl3.1 φθ
syl3anl3.2 ψχθτη
Assertion syl3anl3 ψχφτη

Proof

Step Hyp Ref Expression
1 syl3anl3.1 φθ
2 syl3anl3.2 ψχθτη
3 1 3anim3i ψχφψχθ
4 3 2 sylan ψχφτη