Metamath Proof Explorer


Theorem 3adant1

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 16-Jul-1995) (Proof shortened by Wolf Lammen, 21-Jun-2022)

Ref Expression
Hypothesis 3adant.1 φψχ
Assertion 3adant1 θφψχ

Proof

Step Hyp Ref Expression
1 3adant.1 φψχ
2 1 adantll θφψχ
3 2 3impa θφψχ