Metamath Proof Explorer


Theorem adantll

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypothesis adant2.1 φ ψ χ
Assertion adantll θ φ ψ χ

Proof

Step Hyp Ref Expression
1 adant2.1 φ ψ χ
2 simpr θ φ φ
3 2 1 sylan θ φ ψ χ