Metamath Proof Explorer


Theorem syl22anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl12anc.1 φψ
syl12anc.2 φχ
syl12anc.3 φθ
syl22anc.4 φτ
syl22anc.5 ψχθτη
Assertion syl22anc φη

Proof

Step Hyp Ref Expression
1 syl12anc.1 φψ
2 syl12anc.2 φχ
3 syl12anc.3 φθ
4 syl22anc.4 φτ
5 syl22anc.5 ψχθτη
6 1 2 jca φψχ
7 6 3 4 5 syl12anc φη