Metamath Proof Explorer


Theorem syl22anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl12anc.1
|- ( ph -> ps )
syl12anc.2
|- ( ph -> ch )
syl12anc.3
|- ( ph -> th )
syl22anc.4
|- ( ph -> ta )
syl22anc.5
|- ( ( ( ps /\ ch ) /\ ( th /\ ta ) ) -> et )
Assertion syl22anc
|- ( ph -> et )

Proof

Step Hyp Ref Expression
1 syl12anc.1
 |-  ( ph -> ps )
2 syl12anc.2
 |-  ( ph -> ch )
3 syl12anc.3
 |-  ( ph -> th )
4 syl22anc.4
 |-  ( ph -> ta )
5 syl22anc.5
 |-  ( ( ( ps /\ ch ) /\ ( th /\ ta ) ) -> et )
6 1 2 jca
 |-  ( ph -> ( ps /\ ch ) )
7 6 3 4 5 syl12anc
 |-  ( ph -> et )