Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl1111anc.1 | |- ( ph -> ps ) |
|
| syl1111anc.2 | |- ( ph -> ch ) |
||
| syl1111anc.3 | |- ( ph -> th ) |
||
| syl1111anc.4 | |- ( ph -> ta ) |
||
| syl1111anc.5 | |- ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et ) |
||
| Assertion | syl1111anc | |- ( ph -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl1111anc.1 | |- ( ph -> ps ) |
|
| 2 | syl1111anc.2 | |- ( ph -> ch ) |
|
| 3 | syl1111anc.3 | |- ( ph -> th ) |
|
| 4 | syl1111anc.4 | |- ( ph -> ta ) |
|
| 5 | syl1111anc.5 | |- ( ( ( ( ps /\ ch ) /\ th ) /\ ta ) -> et ) |
|
| 6 | 1 2 | jca | |- ( ph -> ( ps /\ ch ) ) |
| 7 | 6 3 4 5 | syl21anc | |- ( ph -> et ) |