Metamath Proof Explorer


Theorem syl21anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1
|- ( ph -> ps )
syl12anc.2
|- ( ph -> ch )
syl12anc.3
|- ( ph -> th )
syl21anc.4
|- ( ( ( ps /\ ch ) /\ th ) -> ta )
Assertion syl21anc
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl12anc.1
 |-  ( ph -> ps )
2 syl12anc.2
 |-  ( ph -> ch )
3 syl12anc.3
 |-  ( ph -> th )
4 syl21anc.4
 |-  ( ( ( ps /\ ch ) /\ th ) -> ta )
5 1 2 jca
 |-  ( ph -> ( ps /\ ch ) )
6 5 3 4 syl2anc
 |-  ( ph -> ta )