Metamath Proof Explorer


Theorem syl1111anc

Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses syl1111anc.1 φψ
syl1111anc.2 φχ
syl1111anc.3 φθ
syl1111anc.4 φτ
syl1111anc.5 ψχθτη
Assertion syl1111anc φη

Proof

Step Hyp Ref Expression
1 syl1111anc.1 φψ
2 syl1111anc.2 φχ
3 syl1111anc.3 φθ
4 syl1111anc.4 φτ
5 syl1111anc.5 ψχθτη
6 1 2 jca φψχ
7 6 3 4 5 syl21anc φη