Metamath Proof Explorer


Theorem syl12anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1
|- ( ph -> ps )
syl12anc.2
|- ( ph -> ch )
syl12anc.3
|- ( ph -> th )
syl12anc.4
|- ( ( ps /\ ( ch /\ th ) ) -> ta )
Assertion syl12anc
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl12anc.1
 |-  ( ph -> ps )
2 syl12anc.2
 |-  ( ph -> ch )
3 syl12anc.3
 |-  ( ph -> th )
4 syl12anc.4
 |-  ( ( ps /\ ( ch /\ th ) ) -> ta )
5 2 3 jca
 |-  ( ph -> ( ch /\ th ) )
6 1 5 4 syl2anc
 |-  ( ph -> ta )