Metamath Proof Explorer


Theorem syl12anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1 φψ
syl12anc.2 φχ
syl12anc.3 φθ
syl12anc.4 ψχθτ
Assertion syl12anc φτ

Proof

Step Hyp Ref Expression
1 syl12anc.1 φψ
2 syl12anc.2 φχ
3 syl12anc.3 φθ
4 syl12anc.4 ψχθτ
5 2 3 jca φχθ
6 1 5 4 syl2anc φτ