Metamath Proof Explorer


Theorem syl12anc

Description: Syllogism combined with contraction. (Contributed by Jeff Hankins, 1-Aug-2009)

Ref Expression
Hypotheses syl12anc.1 φ ψ
syl12anc.2 φ χ
syl12anc.3 φ θ
syl12anc.4 ψ χ θ τ
Assertion syl12anc φ τ

Proof

Step Hyp Ref Expression
1 syl12anc.1 φ ψ
2 syl12anc.2 φ χ
3 syl12anc.3 φ θ
4 syl12anc.4 ψ χ θ τ
5 2 3 jca φ χ θ
6 1 5 4 syl2anc φ τ