Metamath Proof Explorer


Theorem simpl1r

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpl1r φψχθτψ

Proof

Step Hyp Ref Expression
1 simplr φψτψ
2 1 3ad2antl1 φψχθτψ