Metamath Proof Explorer


Theorem anim12ii

Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007) (Proof shortened by Wolf Lammen, 19-Jul-2013)

Ref Expression
Hypotheses anim12ii.1 φψχ
anim12ii.2 θψτ
Assertion anim12ii φθψχτ

Proof

Step Hyp Ref Expression
1 anim12ii.1 φψχ
2 anim12ii.2 θψτ
3 pm3.43 ψχψτψχτ
4 1 2 3 syl2an φθψχτ