Metamath Proof Explorer


Theorem 3anbi123d

Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994)

Ref Expression
Hypotheses bi3d.1 φψχ
bi3d.2 φθτ
bi3d.3 φηζ
Assertion 3anbi123d φψθηχτζ

Proof

Step Hyp Ref Expression
1 bi3d.1 φψχ
2 bi3d.2 φθτ
3 bi3d.3 φηζ
4 1 2 anbi12d φψθχτ
5 4 3 anbi12d φψθηχτζ
6 df-3an ψθηψθη
7 df-3an χτζχτζ
8 5 6 7 3bitr4g φψθηχτζ