Metamath Proof Explorer


Theorem 3anbi123d

Description: Deduction joining 3 equivalences to form equivalence of conjunctions. (Contributed by NM, 22-Apr-1994)

Ref Expression
Hypotheses bi3d.1 ( 𝜑 → ( 𝜓𝜒 ) )
bi3d.2 ( 𝜑 → ( 𝜃𝜏 ) )
bi3d.3 ( 𝜑 → ( 𝜂𝜁 ) )
Assertion 3anbi123d ( 𝜑 → ( ( 𝜓𝜃𝜂 ) ↔ ( 𝜒𝜏𝜁 ) ) )

Proof

Step Hyp Ref Expression
1 bi3d.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 bi3d.2 ( 𝜑 → ( 𝜃𝜏 ) )
3 bi3d.3 ( 𝜑 → ( 𝜂𝜁 ) )
4 1 2 anbi12d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )
5 4 3 anbi12d ( 𝜑 → ( ( ( 𝜓𝜃 ) ∧ 𝜂 ) ↔ ( ( 𝜒𝜏 ) ∧ 𝜁 ) ) )
6 df-3an ( ( 𝜓𝜃𝜂 ) ↔ ( ( 𝜓𝜃 ) ∧ 𝜂 ) )
7 df-3an ( ( 𝜒𝜏𝜁 ) ↔ ( ( 𝜒𝜏 ) ∧ 𝜁 ) )
8 5 6 7 3bitr4g ( 𝜑 → ( ( 𝜓𝜃𝜂 ) ↔ ( 𝜒𝜏𝜁 ) ) )