Metamath Proof Explorer


Theorem syld3an2

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an2.1 φχθψ
syld3an2.2 φψθτ
Assertion syld3an2 φχθτ

Proof

Step Hyp Ref Expression
1 syld3an2.1 φχθψ
2 syld3an2.2 φψθτ
3 simp1 φχθφ
4 simp3 φχθθ
5 3 1 4 2 syl3anc φχθτ