Metamath Proof Explorer


Theorem syld3an2

Description: A syllogism inference. (Contributed by NM, 20-May-2007)

Ref Expression
Hypotheses syld3an2.1
|- ( ( ph /\ ch /\ th ) -> ps )
syld3an2.2
|- ( ( ph /\ ps /\ th ) -> ta )
Assertion syld3an2
|- ( ( ph /\ ch /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 syld3an2.1
 |-  ( ( ph /\ ch /\ th ) -> ps )
2 syld3an2.2
 |-  ( ( ph /\ ps /\ th ) -> ta )
3 simp1
 |-  ( ( ph /\ ch /\ th ) -> ph )
4 simp3
 |-  ( ( ph /\ ch /\ th ) -> th )
5 3 1 4 2 syl3anc
 |-  ( ( ph /\ ch /\ th ) -> ta )