Description: A syllogism inference. (Contributed by NM, 20-May-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syld3an2.1 | |- ( ( ph /\ ch /\ th ) -> ps ) |
|
syld3an2.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
Assertion | syld3an2 | |- ( ( ph /\ ch /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syld3an2.1 | |- ( ( ph /\ ch /\ th ) -> ps ) |
|
2 | syld3an2.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
3 | simp1 | |- ( ( ph /\ ch /\ th ) -> ph ) |
|
4 | simp3 | |- ( ( ph /\ ch /\ th ) -> th ) |
|
5 | 3 1 4 2 | syl3anc | |- ( ( ph /\ ch /\ th ) -> ta ) |