Metamath Proof Explorer


Theorem 3ad2ant1

Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005)

Ref Expression
Hypothesis 3ad2ant.1 φχ
Assertion 3ad2ant1 φψθχ

Proof

Step Hyp Ref Expression
1 3ad2ant.1 φχ
2 1 adantr φθχ
3 2 3adant2 φψθχ