Metamath Proof Explorer


Theorem 3ad2ant2

Description: Deduction adding conjuncts to an antecedent. (Contributed by NM, 21-Apr-2005)

Ref Expression
Hypothesis 3ad2ant.1 φ χ
Assertion 3ad2ant2 ψ φ θ χ

Proof

Step Hyp Ref Expression
1 3ad2ant.1 φ χ
2 1 adantr φ θ χ
3 2 3adant1 ψ φ θ χ